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ABSTRACT

Consider the Hamiltonian system:

(*) + V'(q) = 0

where q = (ql,...,qn) and V is periodic in qi, 1 4 i < n. It is known

that (*) then possesses at least n + 1 equilibrium solutions. Here we (a)

give criteria for V so that (*) has non-constant periodic solutions and (b)

prove the existence of multiple heteroclinic orbits joining maxima of V.
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PERIODIC AND HETEROCLINIC ORBITS FOR A
PERIODIC HAMILTONIAN SYSTEM

Paul H. Rabinowitz

§ 1. Introduction

Several recent papers [1-9] have studied the existence of multiple

periodic solutions of second order Hamiltonian systems /which are both forced

periodically in time and depend periodically on the dependent variables. In

particular consider

(1.1) q + Vq(t,q) = f(t)

where q = (ql,...,qn), V c C (R x Rn,R), is T periodic in t and is

also Ti periodic in qi, 1 4 i ( n. The continuous function f is assumed

to be r periodic in t and

[f 3 f0 f(s)ds = 0

It was shown in (1,2,5,9] that under these hypotheses, (1.1) possesses at

least n + 1 "distinct" solutions. Note that whenever q(t) is a periodic

solution of (1.1), so is q(t) + (kITi,...,knTn) for any k = (k1,...,kn) c Zn.

This observation leads us to define Q and q to be equivalent solutions of

(1.1) if Q - q = (kiTi,...,knTn) with k c Zn. Thus "distinct" as used

above means there are at least n + I distinct equivalence classes of

periodic solutions of (1.1).

Suppose now that V is independent of t and f E 0 so (1.1) becomes

(HS) q + V'(q) = 0
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Then the above result applies for any T > 0 seemingly giving a large number

of periodic solutions of (HS). However due to the periodicity of V in its

arguments, V can be considered as a function on T n . Since the Ljusternik-

Schirelmann category of Tn in itself is n + 1, a standard result gives at

least n + 1 critical points of V on Tn , each of which is an equilibrium

solution of (HS). These solutions are T periodic solutions of (HS). For

example, for the simple pendulum n = I and (HS) becomes

(1.2) q + sin q = 0

Studying (1.2) in the phase plane shows that if T 4 2w, the only periodic

solutions are the equilibrium solutions q : 0 and q E ±t (modulo 27).

Moreover for T > 2w, there are k nonequilibrum solutions where k is the

largest integer such that - > 2n. (There is exactly one solution having
k

minimal period T/j, 1 4 j < k.) The phase plane analysis also shows that

(1.2) possesses a pair of heteroclinic orbits joining -n and n.

Our goal in this note is twofold. First in §2, criteria will be given

on V so that (HS) possesses nontrivial T periodic solutions, the results

just mentioned for (1.2) appearing as special cases. Our main results are in

§3 where the existence of heteroclinic orbits of (HS) is established. The

arguments used in §2 - 3 are variational in nature. The multiplicity results

of §2 depend on a theorem of Clark [10] and those of §3 involve a minimization

argument.

§ 2. Multiple solutions of (HS)

This section deals with the existence of multiple periodic solutions of

(HS). Assume V satisfies

(V 1 ) V C C1 (R,Re')

and
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(V2 ) V is periodic in qi with period Ti, 1 4 i < n .

As was noted in the Introduction, (V1 ) - (V2 ) imply that V has at least

n + 1 distinct critical points and these provide n + 1 equilibrium

solutions of (HS). By rescaling time, (HS) is replaced by

(2.1) q + )Vl'(q) = 0

and we study the number of 2w periodic solutions of (2.1) as a function of

X = T/2n.

Assume further that

(V3 ) V(q) = V(-q) for q c le

as in the one dimensional example (1.2). Suppose (V1 ) - (V3 ) hold and q ia

a solution of (2.1) such that q'(0) = 0 and q(1) = 0. If q is extendeda2

beyond [0, -] as an even function about 0 and an odd function about 2'
2 2

the resulting function is a 2v periodic solution of (2.1). Moreover the

only constant function of this form is q : 0. To exploit these observations

to obtain 2n periodic solutions of (2.1), let E denote the set of

functions on [- -, n) which are even about 0, vanish at + 7, and possess
2 2 - 2

square integrable first derivatives. As norm in E, we take

2 = fT/2 - 2
(2.2) lql -r

/ 2  jq(t)1 dt

Set
r/2 1 2 2

(2.3) I(q) = f_ /2 [I (t) - X2 V(q(t))Jdt
- 7r/2 2

Since I is even, critical points of I occur in antipodal pairs (-q,q).

It is easily verified that (V1 ) - (V3 ) imply I C C1 (E,R) and critical points

of I in E are classical solutions of (2.1) with q'(0) = 0 and q(Z) = 0.

See e.g. [10]. Hence by above remarks q extends to a 2w periodic solution

of (2.1). Thus we are interested in the number of critical points of I in

E.
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Since (HS) or (2.1) only determine V up to an additive constant, by

(V) - (V2 )1 it can be assumed that the minimum of V is 0 and occurs at

0. Therefore V > 0, 1(0) = 0, and 0 is a critical value of I with 0

as a corresponding critical point. Thus lower bounds for the number of

critical points of I having negative critical values (as a function of X)

provides estimates on the number of nontrivial periodic solutions of (HS).

Suppose that

(V4 ) V is twice continuously differentiable at 0 and

V"(0) is nonsingular.

Then V"(0) is positive definite and Clark's Theorem (10] can be used to

estimate the number of critical points of I.

To be more precise, let al,...,an be an orthogonal set of eigenvectors

of V"(0) with corresponding eigenvalues aj, 1 < j 4 n. Note that the

function (cos kt)aj, k c N, and odd I ( j < n form an orthogonal basis

for E. If q e E,

q = Z bkj(cos kt)aj

and
1/2 2 2 2 2 2 1

(2.4) (- - - V"(0) q-q]dt Z(k )lb ja
72./2 2 2 Tibkj a

Let Pkj(X) = k2 - X2aj. For X sufficiently small, Pkj(X) > 0 for all

k,j, but as X increases, the number of negative Pkj increases. For each

X, let £() denote the number of negative Ujk.

Theorem 2.5: Suppose V satisfies (V1) - (V4 ). Then (2.1) possess at least

£() distinct pairs of nontrivial 2n periodic solutions.

Proof: It was already observed above that I c CI(E,R) and it is easy to see

that I satisfies the Palais-Smale condition (PS) on E, (see e.g. [10]).

Let E denote the span of the set of functions (cos kt)aj such that Ukj < 0.
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Then E is 9 dimensional and for q c EX with Uql = p, by (2.4) for

small p:

I(q) -E(k 2 _ X2 a)1b jaj 2 + o(p2

4 j kj
(2.6)

' -6£p
2  + o(p )

where 6 > 0 (see e.g. [10] for a similar computation). Therefore for p -

p(M) sufficiently small, I(q) < 0 for q c EX and UqB = p. A result of

Clark [10, Theorem 9.1] states:

Proof 2.7: Let E be a real Banach space and I c CI(E,R) with 1(0) = 0, I

even, bounded from below, and satisfy (PS). If there is a set K C E which

is homeomorphic to S1- I by an odd map and sup I < 0, then I possesses at
K

least X distinct pairs of critical points with corresponding negative

critical values.

Since I is bounded from below via (V2 ) and K can be taken to be a

sphere of radius p in Ey, it is clear from earlier remarks that

Proposition 2.7 is applicable here and Theorem 2.5 is proved.

§3. Heteroclinic orbits

In this section, the existence of connecting orbits for (HS) will be

studied. Assume again that (VI) - (V2 ) hold. They imply that V has a

global maximum, V, on Rn. Let

M = e Rn f V(&) =

To begin further assume that

(V5 ) M consists only of isolated points

Hypothesis (V5 ) implies that contains only finitely many points in bounded

subsets of EP. Note also that (V5 ) holds if V c C2 (R,Rn) and V"(E) is

nonsingular whenever & e M. This is the case e.g. for (1.2) where M =
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{7r + 2ji J j E Z}.

If q c C(R,R n ) and

lim q(t) exists ,
t+GO

we denote this limit by q(-). A similar meaning is attached to q(--). Our

main goal in this section is to prove that (V1), (V2 ), (V5 ) imply that for

each 8 c M, there are at least 2n heteroclinic orbits of (HS) joining

to M\{8}, at least n of which emanate from 8 and at least n of which

terminate at p. We will state the result more formally later.

The proof involves a series of steps. Consider the functional

f- 1 ;(t)2
(3.1) I(q) = -.Cal - V(q(t))]dt

Formally critical points of I are solutions of (HS). We will find critical

points by minimizing I over an appropriate class of sets and showing that

there are enough minimizing functions with the properties we seek. Hypotheses

(v1 ), (V2 ), and (V5 ) will always be assumed for the results below.

To begin, it can be assumed without loss of generality that 0 c M, 8 = 0,

and V(0) = 0. Therefore -V(x) > 0 for all x c R and V(x) > 0 if

x i M. Set

E {q c W1'2 (R <

Taking

(3.2) 1q11 2 _ ;(t)12 t + q(0)12

as a norm in E makes E a Hilbert space. Note that q c E implies

q c C(R,Rn). For E c M\{0} and e > 0, define r,( ) to be the set of

q c E satisfying

r (i) q(--) = 0

(3.3) (ii) q(-) =

(iii) q(t) BC (M\{O, }) for all t c R
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Here for A C Rn o

B (A) = {x c - < ,

i.e. B,(A) is an open E-neighborhood of A. We henceforth assume
1

(3.4) £ < - m min Y -
3 £M\{O}

Then it is easy to see that fr () is nonempty for all c M. E.g. if

q(t) - 0, t ( 0, q is piecewise linear for t c (0,1], q(t) j B (M\[0,}),

and q(t) - for t > 1, then q(t) c F£( ). Finally define

(3.5) c () inf I(q)

It will be shown that for £ sufficiently small, there are at least n

distinct e M\{0} such that c ( ) is a critical value of I and the

infimum is achieved for some q c r' (t) which is a desired heteroclinic

orbit.

Let

a - min - V(x)
S xjeB C(M)

Then Ci > 0. The following lemma gives a useful estimate which will be

applied repeatedly later.

Lemma 3.6: Let w E E. Then for any r < s e R such that w(t) j B£ CM) for

t c [r,s],

(3.7) I(w) ) 2a CL w(r) - w(s) •

Proof: Let I -w(r) - w(s)j and T - Ir-sl. then

= if' w(t)dtj < f' Iw(t)ldt
r r

(3.8)

s
T /2 (f i,(til2 dt) 2

Moreover since V 4 0 and w(t) I B (M) in [r,s),
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2 2

(3.9) I(w) > - - fS V(q(t)dt > - + a T E p(T)
21 r 2r e

The minimum of 9 occurs for T / so (3.9) yields (3.7).

Remark 3.10. (M) (3.8) shows that £ in (3.7) can be replaced by the length

of the curve w(t) in (r,s]. (ii) The above argument implies (3.7) holds

with £ replaced by a finite sum of lengths of intervals if w(t) g B (M)

for t lying in these intervals. (iii) If w c E and I(w) < -, (ii) shows

that w c L*(R,n). In fact more is true as the next result shows:

Proposition 3.11: If w c E and I(w) < -, there exist F, c M such that

= w(--) and n = w(-).

Proof: Since w c L=(R,Rn ) by Remark 3.10 (iii), A(w), the set of

accumulation points of w(t) as t + - , is nonempty. Suppose that there

exists a 6 > 0 such that w(t) e B6 (M) for all t near - . Then

1(w) > - V(w(t))dt

for any p E R shows I(w) = - contrary to hypothesis. Hence A(w)

contain some E e M. We claim = w(--). If not, there is a 6 > 0, a

sequence t i + -- as i + - with w(ti) c B 61 2("). Thus the curve w(t)

must intersect 3B6 /2 ( ) and aB6 ( ) infinitely often as t + --. Remark
6.

3.10 (ii) then implies I(w) ) 2cz6/2 i j for any j c N contrary to

I(w) < .

The next step towards proving our existence result is the following:

Proposition 3.12: For each e c (0,y) and c M\(O}, there exists q qe,

c r,(&) such that I(qc,,) = c,(F), i.e. q., minimizes IIrE(E).

Proof: Let (q.) be a minimizing sequence for (3.5). By the form of I,

the norm in E, and Remark 3.10 (1ii), (qm) is a bounded sequence in E.
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Therefore passing to a subsequence if necessary, there is a q 6 E such

that q converges to q in E (weakly) and in L2o c.

We claim

(3. 13) I(q) < .

Indeed let -< < s < o. For w E E, set

C I 2(3 4) (7sw - 2 Jwct)) - V~w~t))]dt

Then the first term on the right hand side of (3.14) is weakly lower semi-

continuous on E and the second term is weakly continous on E. Therefore

4(a,s, ° ) is weakly lower semicontinuous on E. Since (qm) is a minimizing

sequence for I, there is a K > 0 depending on e and but independent

of t and s such that

(3.15) K ' I(qm ) ' D(a,s,q m ) •

Therefore

(3.16) K > lim I(qm) > lim f(a,s,qm) > 4(a,s,q)

Since q c E and a, s are arbitrary, (3.16) implies V(q) c Ll(R,Rn) and

(3.13) holds.

Next we claim q(--) = 0 and q(-) = . Since I(q) < -, by

Proposition 3.11, there are n, c M such that q(--) n and q(a) r.

Since qm(t) j B (M\{0, }) for all t c R and qm + q in L oc

££
q(t) e B (M\{0,&}) for all t c R. Therefore rn, c {O,E}. For each m c M,

since %mc r (), there is a tm c R such that qm(t-) E B,(0) and

qm(t) c B,(O) for t < tm. Now if w c E, so is w9(t) - w(t-e) for each

and I(we) = I(w). Therefore it can be assumed that t m = 0 for all

m c N. Consequently %(t) c BC(0) for all t < 0. Therefore q(t) E B (0)

for all t < 0 and n c [0,C} r) B (0) = (0}, i.e- n = 0.

-9-



Next to see that q(-) =, note that since qm (-) = , there is a

+ + t+
tm > 0 such that qm(t) c Bc(U) for all t > tm and qm (t) c 3B(). Now

{t+ I m e N} is bounded for otherwise along a subsequence,

+
t

>fm - V((t))dt t +

a contradiction. Let t + = Yn t +
. Then for any t > t+ , qm(t) + q(t) c B

m

Hence q(-)

The above remarks show q e rc( ). By (3.16), for any 0, s c R with

o > s,

(3.17) inf I(w) = lim I(qm) 0 O(a,s,q)
wEF

As a + - and s + -, t(a,s,q) + I(q) so (3.17) implies q minimizes

i on r.(M)

Since q,,E c rc), it is possible that qcE(a) c aBE(M\{0, }) for

some compact set T = T(E,&) of values of a. However the following partial

regularity result obtains:

Proposition 3.18: q., is a classical solution of (HS) on R\T.

Proof: Let a c R\T. Then a lies in a maximal open interval 0 C R\T. Let

E CO(R,Rn) such that the support of T lies in 0. Then for 6

sufficiently small, q + 6y c 1,( ) (with q Eqc, ). Since q minimizes

I on r(F), it readily follows that

(3.19) '(q)E - ;[q - V'(q) -,ldt = 0

for all such V. Fixing r, s c 0 with r < s and noting that (3.19) holds

for all T c W '2 ([r,s],V'), we see that qj is a weak solution of the

equation

+ V'(q) = 0 ,r < t < s

(3.20)
w(r) = q(r) , w(s) = q(s)

-10-



Consider the inhomogeneous linear system:

U + V'(q) = 0 ,r < t < s

(3.21)

u(r) = q(r) , u(s) = q(s)

This system possesses a unique C2 solution which can be written down

explicitly. Therefore from (3.21),

(3.22) f - V'(q)- Jdt = 0
r

for all 9 c Wl'72(r,s],Rn). Comparing (3.19) and (3.22) yields
0

(3.23) r - dt = 0

for all T c Wl' 2 ([r,s],R n ) and since q - u belongs to this space, it

follows that q = u on Jr,s]. In particular q c C2 ([r,s],Rn). Since r

and s are arbitrary in 0, q c C2 (R\T, n ) and satisfies (HS) there. Thus

the Proposition is proved.

Corollary 3.24: q'e,&(t) + 0 on t + ±0.

Proof: By Proposition 3.18, q = qet is a solution of (HS) for Iti large.

Since (HS) is a Hamiltonian system

(3.25) H(t) 2 Iq(t)j2 + V(q(t)) E constant

for large t, w.g. H(t) E p for t > t Now

I(q) > [ ;(t)12 - V(q(t))]dt
t

(3.26)

= f [H(t) - 2V(q(t))Jdt
t

and V(q(*)) c L I, it follows that p = 0. Since q(t) + and V(q(t)) 0

as t + coo (3.25) shows q(t) + 0 as t + - and similarly as t + -0.

The above results show that functions q. are candidates for hetero-

clinic orbits of (HS) emanating from 0. It remains to show that for

appropriate choices of £ and t there actually are at least n hetero-
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clinic orbits of (HS). That there is at least one follows next.

Let

c e inf c (M)
V O}

By (3.7), only finitely many c£( ) are candidates for the infimum and hence

it is achieved by say c,( ) = I(qe,,) where 1 = 1(e). Choosing a sequence

E + 0, by (3.7) again, it can be assumed that 1(e) is independent of c

so V(E9 ) - .

Proposition 3.27: For j sufficiently large,q, is a heteroclinic orbit

of (HS) joining 0 and .

Proof: Let qj = qejV By the definition of r,(C), Proposition 3.18, and

Corollary 3.24, it suffices to show that for large j, q.(t) e DB (M \0,f})JJ

for all t 6 R. If not, there is a sequence of j's + , nj c M\o,}, and

t. c R such that qj(t) c aBe (nj) and qi(t) l DB (j) for t < tj. By

(3.7) again, the set of possible nj's is finite so passing to a subsequence

if necessary, nj H n. Two possibilities now arise.

Case i: There is a subsequence of j's + m such that qi(t) l B ( )

for t < tj,

and

Case ii: For every j c N, there is a Tj < tj such that

qj(T ) c 8B (i).

If Case i occurs, along the corresponding sequence of j's, define a family

of new functions:

-12-



qjt = q(t), t < t

=(t-t i)n + (1-(t-t il)q E (tj) t C [tj~t j+1]

) t > t +
J

Then Qj E() and

I(qj) - I(Qj) f [7 lqj(t)I - V(qj(t))]dt
)j t. 2 jJ

(3.28) t.+1

ft. I (t)l - v(Qjt))Idt
3JJ

Since the curves q- intersect 3B (ri) and aB1 (C) in the interval

[t, by (3.7) and (3.28),

I(q.) - I(Qj) > /2a1 y - n-q (tj)

(3.29)

+ fl V(Q (t-tj))dt

As j -m, the second and third terms on the right hand side of (3.29) + 0.

Hence for large j, c - = I(qj) > I(Qj), a contradiction. Case ii can be

eliminated by a similar but simpler argument.

Next let B denote the set of c M\{0} such that for some £ c (0,y),

c (F) corresponds to a connecting orbit of (HS) joining 0 and E. B is

nonempty by Proposition 3.27. Let A denote the set of finite linear

combinations over Z of elements of B.

Proposition 3.30: A = M.

P2 ,of: If not, S 2 M\A 7 W. For each £ c (0,y), choose gr c S such that

(3.31) c ( ) = inf c ( )

-13-



By Proposition 3.12 and (3.6), this infimum is achieved and there is such a

E and corresponding q. - qe' e c 1'() such that I(q) = c,(E.). We

claim that as in Proposition 3.27, for e sufficiently small,

(3.32) qe(t) aB (M\{O,t }) for all t c R

and therefore by Proposition 3.18 and Corollary 3.24, q. is a connecting

orbit of (HS) joining 0 and 4. Hence E. e B and a fortiori A, a

contradiction. Thus A = M.

To verify (3.32), suppose to the contrary that there exists

TI c M\t0, j and t. R such that q,(t.) c 8BE(n£). Either (a) ne c S

or (b) e - ni c S for if both belong to A, so does their sum, .,

contrary to the choice of E.. Within case (a), as in Proposition 3.Z7, two

further possibilities arise:

(i) q (t) e B ( ) for t < t

or

(ii) there is a TE < te such that q,() E

In case (a) (i) occurs, define

Q(t) = q (t) , t 4 t

= (t-t + (1-(t-t£))q (t e t C (t t C +

t t + 1.
-= , tt +1t

Then Q c F'(n£) and

I(Q) - I(q E) = et In - qe(t )1 - V(Q)]dt

(3.33)
1Iq 2 2 - V(q )Jdt .

-14-



The first term on the right hand side of (3.33) approaches 0 as e + 0

while, as in Proposition 3.27, the second exceeds a (fixed) multiple of Y in

magnitude uniformly for small C. Hence for C small, I(Q) < I(q.) and

consequently c,(n.) < c.() contrary to the . ,oice of E. Thus (a) (i) is

not possible. If case (a) (ii) occurs a simple comparison argument shows that

for E small, q. does not minimize I on r,(C,), a contradiction.

Next suppose case (b) occurs. Two further possibilities must be

considered here:

(iii) q (t) B(0) for t > tC
C e

(iv) there is a ai> te such that q,() c BC(0).

For case (b) (iii), define

Q(t) =0 , t 4 t -1

=(t-t -l)(q (t) -ni t C (tF - 1, t)
££

F- £ C C C

q(t) -n e, t )t

Then Q c r ( - nE and

t 12
I(Q) - I(q) ft£_1 [1 Iq - - V(Q)]dt

2

(3.34)
- 12 - vq - )dt

via (V2 ). As in (3.33), for e small, the right hand side of (3.34) is

negative so c£(Ec - n.) < c,( .), contrary to the choice of E. Lastly a

single comparison argument shows that if (b) (iv) occured, q. would not

minimize I on r.(). The proof is complete.
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Finally observing that if A = M, there must be at least n distinct

heteroclinic orbits of (HS) emanating from 0, we have

Theorem 3.35: If V satisfies (VI), (V2 ) and (V5 ), for any a c M, (HS) has

at 2n heteroclinic orbits joining 0 to M\{8}, n of which originate at

a and n of which terminate at S.

Proof: We need only proof the last assertion. But that follows immediately

on observing that the arguments given above work equally well for curves w

in E for which w(-) = 0 and w(--) c M\{0}.

Remark 3.36: A variant of Proposition 3.30 which is more iterative in nature

can be given as follows: Let B1 denote the set of those c M\{O} such

that cE( ) = ce for some e c (0,y). Let Al denote the span of B1

over M. The arguments of Proposition 3.30 show either A, = M or for e

sufficiently small

inf C (E)
cM\A 1

corresponds to a heteroclinic orbit of (HS) with terminal point in M\A1 .

Supplement Bi by these new orbits calling the result B2 and set A2 equal

to the span of 82 over Z. Continuing this process yields at least n

heteroclinic orbits emanating from 0 in at most n steps.

Remark 3.37: An interesting open question for (HS) when (VO), (V2 )1 (V5 ) hold

is whether there exist heteroclinic orbits joining non-maxima of V. Equation

(1.2) shows there won't be any joining minima of V in general.

Remark 3.38: An examination of the proof of Theorem 3.35 shows that

hypothesis (V2 ) plays no major role with Proposition 3.30 other than to ensure

that M contains at least two points and there is no problem in dealing with
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M near infinity in Rn. Thus the above arguments immediately yield:

Theorem 3.39: If V satisfies (V1 ), (V5 )1

(V6 ) M contains at least two points,

and

(V7) lim V(q) < V

then each 8 e M contains at least two heteroclinic orbits joining 8 to

one originating at 8 and one terminating at 8.

Remark 3.40: It is also possible to allow V to approach V as JqJ +

but then some assumptions must be made about the rate of approach.

For our final result, (HS) is considered under a weaker version of

(V5 ). Certainly some form of (V5 ) is needed. E.g. if V1 3  0, q(t) = 4 is a

solution of (HS) for all 4 c Rn and there exist no connecting orbits.

Moreover if M possesses an accumulation point, 1, which is the limit of

isolated points in M, the methods used above do not give a heteroclinic

orbit emanating from 1 since c. + 0 as £ 0. Of course there may still

be connecting orbits that can be obtained by other means.

The earlier theory does carry over to the following setting:

Theorem 3.41) Suppose V satisfies (Vl), (V2 ), and

(V8 ) 8 is an isolated point in M and M\{8} # 9

Then there exists a solution w of (HS) such that w(-o) = 8 and

w(t) + M\(8 as T + -.

Proof: We will sketch the proof. Again without loss of generality a = 0

and V(0) = 0. Set

A = (qeE I q(--) = 0 and q(t) + M\(O1 as t + *}

Define
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(3.42) C E inf I(q)

qeA

We claim c is a critical value of I and any corresponding critical point,

q, is a solution of (HS) of the desired type. The first step in the proof is

to show that if w e E and I(w) < -, then w(t) + M as t + ±-. This is

done by the argument of Proposition 3.11. Next let (qm) be a minimizing

sequence for (3.32). It converges weakly in E to q. A slightly modified

version of the argument of Proposition 3.12 shows I(q) < -, q e A, and q

minimizes I over A. Finally the arguments of Proposition 3.18 and

Corollary 3.24 imply that q is a C2 solution of (HS) emanating from

and approaching M\[8} as t + 0.
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